
Latent
 Semantic
 Analysis

Latent Semantic Analysis (LSA) is a framework for analyzing text using matrices
Find relationships between documents and terms within documents
Used for document classification, clustering, text search, and more
Lots of experts here at CU Boulder!

sci-kit
 learn

sci-kit learn is a Python library for doing machine learning, feature selection, etc.
Integrates with numpy and scipy
Great documentation and tutorials

Vectorizing
 text

Most machine-learning and statistical algorithms only work with structured, tabular data
A simple way to add structure to text is to use a document-term matrix

Document-term
 matrix

In [97]: import sklearn
# Import all of the scikit learn stuff
from __future__ import print_function
from sklearn.decomposition import TruncatedSVD
from sklearn.feature_extraction.text import TfidfVectorizer
from sklearn.feature_extraction.text import CountVectorizer
from sklearn.preprocessing import Normalizer
from sklearn import metrics
from sklearn.cluster import KMeans, MiniBatchKMeans

import pandas as pd
import warnings
# Suppress warnings from pandas library
warnings.filterwarnings("ignore", category=DeprecationWarning,
                        module="pandas", lineno=570)



import numpy

In [155]: example = ["Machine learning is super fun",

           "Python is super, super cool",

           "Statistics is cool, too",

           "Data science is fun",

           "Python is great for machine learning",

           "I like football",

           "Football is great to watch"]

vectorizer = CountVectorizer(min_df = 1, stop_words = 'english')

dtm = vectorizer.fit_transform(example)

pd.DataFrame(dtm.toarray(),index=example,columns=vectorizer.get_feature_names

()).head(10)

Each row represents a document. Each column represents a word. So each document is a 13-dim vector.
Each entry equals the number of times the word appears in the document

Out[155]:

cool data football fun great learning like machine python science statistics super

Machine
learning
is
 super
fun

0 0 0 1 0 1 0 1 0 0 0 1

Python
is
 super,
super
cool

1 0 0 0 0 0 0 0 1 0 0 2

Statistics
is
 cool,
too

1 0 0 0 0 0 0 0 0 0 1 0

Data
science
is
 fun

0 1 0 1 0 0 0 0 0 1 0 0

Python
is
 great
for
machine
learning

0 0 0 0 1 1 0 1 1 0 0 0

I
 like
football

0 0 1 0 0 0 1 0 0 0 0 0

Football
is
 great
to
 watch

0 0 1 0 1 0 0 0 0 0 0 0



Note: order and proximity of words in documents is NOT accounted for. Called a "bag of words"

representation.

In [115]: # Get words that correspond to each column
vectorizer.get_feature_names()

Example: "machine" appears once in the first document, "super" appears twice in the second document, and

"statistics" appears zero times in the third document.

Singular
 value
 decomposition
 and
 LSA

In [116]: # Fit LSA. Use algorithm = “randomized” for large datasets
lsa = TruncatedSVD(2, algorithm = 'arpack')

dtm_lsa = lsa.fit_transform(dtm)

dtm_lsa = Normalizer(copy=False).fit_transform(dtm_lsa)

Each LSA component is a linear combination of words

In [166]: pd.DataFrame(lsa.components_,index = ["component_1","component_2"],columns = 

vectorizer.get_feature_names())

Out[115]: [u'cool',

 u'data',

 u'football',

 u'fun',

 u'great',

 u'learning',

 u'like',

 u'machine',

 u'python',

 u'science',

 u'statistics',

 u'super',

 u'watch']

Out[166]:

cool data football fun great learning like machine

component_1 0.280004 0.035353 0.033417 0.223993 0.178307 0.338085 0.004555 0.338085

component_2 0.365270 -0.064548 -0.298349 -0.168056 -0.478428 -0.366379 -0.082792 -0.366379



Each document is a linear combination of the LSA components

In [157]: pd.DataFrame(dtm_lsa, index = example, columns = ["component_1","component_2"

])

In [132]: xs = [w[0] for w in dtm_lsa]
ys = [w[1] for w in dtm_lsa]
xs, ys

In [140]: # Plot scatter plot of points
%pylab inline
import matplotlib.pyplot as plt
figure()

plt.scatter(xs,ys)

xlabel('First principal component')

ylabel('Second principal component')

title('Plot of points against LSA principal components')

Out[157]:

component_1 component_2

Machine
 learning
 is
 super
 fun 0.957024 -0.290007

Python
 is
 super,
 super
 cool 0.856484 0.516174

Statistics
 is
 cool,
 too 0.563355 0.826215

Data
 science
 is
 fun 0.704171 -0.710030

Python
 is
 great
 for
 machine
 learning 0.717284 -0.696781

I
 like
 football 0.099136 -0.995074

Football
 is
 great
 to
 watch 0.235618 -0.971846

Out[132]: ([0.95702439393037975,

  0.85648370973755439,

  0.56335489155638729,

  0.70417108799801642,

  0.71728390345517212,

  0.099136388426341523,

  0.23561831047045331],

 [-0.29000742994307793,

  0.51617405490221679,

  0.82621502416712989,

  -0.71003033655449532,

  -0.69678102861954516,

  -0.99507385479158361,

  -0.97184567281593082])



show()

Geometric
 picture

In [176]: # Plot scatter plot of points with vectors
%pylab inline
import matplotlib.pyplot as plt
plt.figure()
ax = plt.gca()
ax.quiver(0,0,xs,ys,angles='xy',scale_units='xy',scale=1, linewidth = .01)
ax.set_xlim([-1,1])
ax.set_ylim([-1,1])
xlabel('First principal component')
ylabel('Second principal component')
title('Plot of points against LSA principal components')
plt.draw()
plt.show()

Populating the interactive namespace from numpy and matplotlib

Populating the interactive namespace from numpy and matplotlib



We have reduced dimension from 13-dim to 2-dim (and have lost some info)
Similar docs point in similar directions. Dissimilar docs have perpendicular (orthogonal) vectors. "Cosine
similarity"
Can use cosine similarity for search: which doc has the smallest angle with search term?

Document
 similarity
 using
 LSA

In [154]: # Compute document similarity using LSA components
similarity = np.asarray(numpy.asmatrix(dtm_lsa) * numpy.asmatrix(dtm_lsa).T)

pd.DataFrame(similarity,index=example, columns=example).head(10)

Out[154]:

Machine
learning
is
 super
fun

Python
 is
super,
super
cool

Statistics
is
 cool,
too

Data
science
is
 fun

Python
 is
great
 for
machine
learning

I
 like
football

Football
is
 great
to
 watch

Machine
learning
 is
super
 fun

1.000000 0.669981 0.299536 0.879823 0.888530 0.383455 0.507335

Python
 is
super,
super
 cool

0.669981 1.000000 0.908975 0.236612 0.254682 -0.428723 -0.299838

Statistics
 is
cool,
 too

0.299536 0.908975 1.000000 -0.189940 -0.171606 -0.766296 -0.670217

Data
science
 is
fun

0.879823 0.236612 -0.189940 1.000000 0.999826 0.776342 0.855956

Python
 is
great
 for
machine
learning

0.888530 0.254682 -0.171606 0.999826 1.000000 0.764458 0.846169

I
 like
football

0.383455 -0.428723 -0.766296 0.776342 0.764458 1.000000 0.990417

Football
 is
great
 to
watch

0.507335 -0.299838 -0.670217 0.855956 0.846169 0.990417 1.000000



Improvements
 and
 next
 steps:

Vectorize with TFIDF (term-frequency inverse document-frequency: uses overall frequency of words to weight

document-term matrix)

Use LSA components as features in machine learning algorithm: clustering, classification, regression

Alternative dimensionality reduction: Isomap, Random Matrix Methods, Laplacian Eigenmaps, Kernel PCA (cool

names!)

Try
 it
 on
 your
 own

List of 140k StackOverflow posts taken from a Kaggle competition

Sample code on my personal website (www.williamgstanton.com): LSA (with 3 components instead of 2),

document similarity, clustering

In []: # Import pandas for data frame functionality, CSV import, etc.
import pandas as pd

In []: # Import data as csv. Change directory to file location on your computer.
dat = pd.read_csv("/Users/wstanton/Desktop/stack_overflow/train-sample.csv")

In []: # Extract titles column from DataFrame
titles  = dat.Title.values

In []: # Extract bodies column from DataFrame
bodies = dat.BodyMarkdown.values

Thanks
 for
 listening!

Thanks to Data Science Assoc. and Meetup for inviting me to talk

Find me on LinkedIn: www.linkedin.com/in/willstanton

Personal website: www.williamgstanton.com

Any further questions?

watch


