Neural and Evolutionary Computing

Deep Convolutional Autoencoder for Assessment of Anomalies in Multi-stream Sensor Data

February, 2022


A fully convolutional autoencoder is developed for the detection of anomalies in multi-sensor vehicle drive-cycle data from the powertrain domain. Preliminary results collected on real-world powertrain data show that the reconstruction error of faulty drive cycles deviates significantly relative to the reconstruction of healthy drive cycles using the trained autoencoder. The results demonstrate applicability for identifying faulty drive-cycles, and for improving the accuracy of system prognosis and predictive maintenance in connected vehicles.

In-Datacenter Performance Analysis of a Tensor Processing Unit

Norman P. Jouppi, Cliff Young, Nishant Patil, David Patterson, Gaurav Agrawal, Raminder Bajwa, Sarah Bates, Suresh Bhatia, Nan Boden, Al Borchers, Rick Boyle, Pierre-luc Cantin, Clifford Chao, Chris Clark,Jeremy Coriell, Mike Daley, Matt Dau, Jeffrey Dean, Ben Gelb, Tara Vazir Ghaemmaghami, Rajendra Gottipati, William Gulland, Robert Hagmann, C.